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ABSTRACT  9 

The eutrophication of estuaries results from increasing anthropogenic nutrient inputs to coastal waters.  Ecosystem 10 

recovery from eutrophication is partly dependent on the ability of a system to assimilate or remove nutrients, and 11 

denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are important pathways for nitrogen (N) 12 

retention or removal.  We measured rates of denitrification and DNRA over an annual cycle at two stations in 13 

Weeks Bay, AL, a shallow microtidal estuary receiving freshwater from two rivers with agricultural watersheds and 14 

high N inputs.  We hypothesized that rates of DNRA would exceed denitrification in the sulfidogenic sediments in 15 

this estuary.  Consistent with our hypothesis, we found that DNRA (44.4 ± 5.5 μmol N m
-2

 hr
-1

) exceeded in situ 16 

denitrification (0.9 ± 2.3 μmol N m
-2

 hr
-1

) and that even in the presence of abundant water column nitrate DNRA 17 

was favored over denitrification by a factor of two.  DNRA is estimated to provide N to the water column at a rate 18 

equivalent to 15% of the N input that is retained within the estuary and is a significant component of the N budget in 19 

this highly impacted estuary.  DNRA by retaining N in the system contributes to the nitrogen demand by primary 20 

producers can impact this estuary through enhanced rates of primary production.  Weeks Bay, like many coastal 21 

estuaries, experiences periods of hypoxia, blooms of harmful algae and fish kills.  Future management efforts should 22 

focus on reducing nutrient input to this estuary without which the significant retention of N in this system through 23 

DRNA will contribute to the undesirable ecosystem attributes associated with eutrophication.   24 

Capsule: DNRA is a significant process even in the presence of elevated nitrate concentrations in the sulfidogenic 25 

sediments of Weeks Bay, Alabama, and provides a significant fraction of the nitrogen demand by primary 26 

producers.  It is conceivable that higher inputs of nutrients will contribute to the initiation and retention of algal 27 

blooms and subsequent deposition of organic matter to the sediments, degradation of which will lead to more 28 

hypoxic events and fish kills in this and similarly impacted ecosystems if management decisions do not lead to 29 

nutrient input reductions.  30 
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 32 

INTRODUCTION 33 

Nearshore marine ecosystems are especially sensitive to anthropogenic nutrient inputs (Smith et al., 1999) 34 

with ecosystem structure and function markedly altered as a consequence (Cloern, 2001; Halpern et al., 2007; 35 

Harley et al., 2006).  Anthropogenically-driven increases in N loads (primarily as nitrate, NO3
-
) to aquatic systems 36 

and associated water quality problems have focused attention on understanding the variables that affect processes 37 

within the N cycle, and more specifically the pathways of NO3
-
 reduction within estuarine sediments.  These 38 

processes include canonical denitrification, anaerobic ammonium (NH4
+
) oxidation (anammox), and dissimilatory 39 

nitrate reduction to NH4
+
 (DNRA).  Denitrification is carried out by bacteria that reduce NO3

-
 at low (0.2 mg/L) 40 

oxygen (O2) concentrations and produce nitrous oxide (N2O) and dinitrogen gas (N2) (Knowles, 1982; Seitzinger et 41 

al., 2006).  Anammox oxidizes NH4
+
 with NO2

-
 as the electron acceptor to produce N2, however, it generally 42 

accounts for only a minor fraction of the N2 produced (Dalsgaard et al., 2005).  As a result of DNRA, NO3
-
 is 43 

reduced to NH4
+
 (Gardner et al., 2006; Kaspar et al., 1981).  In contrast to denitrification and anammox that lead to 44 

the removal of N from the system, DNRA retains N as NH4
+
 (An and Gardner, 2002).  In addition to N and 45 

phosphorus (P) regenerated through mineralization of sediment organic matter (Twilley et al., 1999) N retained 46 

through DNRA contributes to primary production in estuaries. 47 

Understanding the factors that control how NO3
-
 is cycled has implications for predicting the impact of 48 

excess nutrient inputs to nearshore marine systems (Christensen et al., 2003; Seitzinger et al., 2006).  Indeed, 49 

anthropogenic N loading in the watershed and the fate of nutrients once they enter the estuary are primary 50 

management concerns (Paerl et al., 2014).  Denitrification has empirically been shown to vary as a function water 51 

column NO3
-
 concentration, the water column residence time, (Nixon et al., 1996; Seitzinger et al., 2006), as well 52 

the overall rate of sediment organic matter mineralization (Fennel et al., 2009).  With higher water residence time 53 

and elevated NO3
-
 concentrations, primary production is enhanced which leads to higher inputs of organic matter to 54 

the sediment and leads to higher denitrification rates (Middelburg et al., 1996).  However, the same factors, namely 55 

NO3
-
 availability and organic matter content of the sediments (Tiedje, 1988), have also been shown to influence 56 

DNRA (Christensen et al., 2000; Dong et al., 2011).  The ratio of NO3
-
 to organic matter content is a primary factor 57 

that determines if NO3
- 
is lost through denitrification or retained in the system through DNRA (Burgin and 58 

Hamilton, 2007).  Other variables such as the presence of reduced sulfur in the sediments also influence 59 
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denitrification and DNRA.  The presence of sulfides in sediments lead to reduced denitrification (Tobias et al., 60 

2001) and coupled nitrification-denitrification (Christensen et al., 2003), though autotrophic denitrification coupled 61 

to reduced sulfur compounds is noted (Batchelor and Lawrence, 1978).  But DNRA can proceed 62 

chemolithoautotrophically through oxidation of reduced sulfur species (Brunet and Garcia-Gil, 1996; Dalsgaard and 63 

Bak, 1994), and in the presence of sulfides a larger fraction of the available NO3
-
 can be retained in the system as 64 

opposed to lost from the systems through denitrification (Christensen et al., 2003; Christensen et al., 2000).  These 65 

complexities make it challenging to predict how excess NO3
-
 delivered to the coast will be processed. 66 

We determined rates of denitrification and DNRA in Weeks Bay, AL, USA, a shallow (1.4 m depth) 67 

microtidal (0.4 m) estuary in the northern Gulf of Mexico that is part of the National Estuarine Research Reserve 68 

System.  Weeks Bay is fringed with a variety of wetland habitats receiving freshwater from the Fish and Magnolia 69 

Rivers that both have highly agricultural watersheds with dissolved inorganic nitrogen (DIN) concentrations in the 70 

rivers exceeding at times 140 μM (Lehrter, 2008).  Caffrey et al. (2013) reported total N inputs into Weeks Bay of 71 

10 mol N m
-2

 yr
-1

, which is one of the highest rates of N loading to an estuary in the northern Gulf of Mexico 72 

estuaries.  Previous studies in Weeks Bay found high porewater sulfide concentrations (Caffrey et al., 2007), 73 

significant sediment uptake of NO3
-
 and high NH4

+ 
fluxes, but concurrent low net denitrification rates (Mortazavi et 74 

al., 2012; Riggs, 2010).  Therefore, we hypothesized that DNRA is the significant reduction pathway for NO3
-
 in 75 

Weeks Bay and because of the sulfidogenic sediments, DNRA would also be a significant NO3
-
 reduction pathway 76 

in the presence of excess NO3
-
.  Periods of anoxia are common occurrences in Weeks Bay 77 

(http://cdmo.baruch.sc.edu/), as are blooms of harmful algae (Canion et al., 2013) and fish kills and understanding 78 

the fate of nutrients in this system has management implications. 79 

 80 
METHODS 81 
 82 
Field Collections 83 

Intact sediment cores and water column samples for experiments were collected quarterly from bare 84 

sediments by hand near the mouth and in the mid bay area of the Weeks Bay National Estuarine Research Reserve 85 

(hereafter referred to as MidBay and Mouth stations) between December 2011 and October 2013 (Fig. 1).  At both 86 

sites, we measured temperature, salinity, pH, and dissolved oxygen (DO) with a YSI Model 556 Multiparameter 87 

Meter.  Water column samples for nutrient analysis were collected by hand, filtered in the field (GF/F, 0.7 micron) 88 

and frozen until DIN and phosphate (PO4
3-

) analyses.  All nutrient concentrations from the field and experimental 89 
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samples described below were measured with a Skalar SAN
+
 Autoanalyzer.  Total nitrogen and carbon content were 90 

measured in triplicate from the top 1 cm of sediment.  Samples were acidified to remove carbonates (Harris et al., 91 

2001) and total C and N were analyzed with an elemental combustion analyzer (Costech Instruments, model ECS 92 

4010).  Based on the ASTM C136-06 standard, grain size distribution was determined by sieve analysis using sieves 93 

#10, #60, and #230 from a haphazard sediment grab of approximately 2 kg at each site (ASTM C136-06, 2006).   94 

Denitrification and DNRA from intact sediment cores with N enrichment 95 

In a darkened environmental chamber set to site temperature, denitrification, and DNRA at the sediment-96 

water interface were measured on sediment cores with N enrichment (9.5 cm inner diameter; 19 cm sediment with 5 97 

cm overlying water; 3 per station in 2011 and 2012; 6 per station in 2013) set up in a flow-through system.  Site 98 

water was filtered (0.7 micron) and amended to ~100 µM Na
15

NO3
-
 (99 atom %) representing similar N 99 

concentrations reported by Lehrter (2008), and used as the inflow water at a continuous flow rate (1.2 mL min
-1

) into 100 

each core.  The outflow from each core was collected in a reservoir.  Inflow and outflow samples for dissolved gas 101 

and nutrient analysis were collected at 36 hours to allow the systems to approach steady-state conditions (Eyre et al., 102 

2002).  Benthic flux calculations were calculated according to: (Co – Ci) * f/a, where Co and, Ci are the outflow and 103 

inflow concentration in μmole L
-1

, f is the flow rate (0.072 L hr
-1

), and a is the sediment surface area (0.00708 m
-2

) 104 

(Lavrentyev et al., 2000). 105 

Samples for dissolved gas analysis were collected in 12 mL Exetainers and preserved with 250 µL of 50% 106 

(w/v) ZnCl2 before analysis on a membrane inlet mass spectrometer (MIMS) (Kana et al., 1998) fitted with a copper 107 

column heated to 600
o
C to remove oxygen (O2) (Eyre et al., 2002).  Following the Isotope Pairing Technique (IPT) 108 

(Nielsen, 1992), denitrification rates were calculated under ambient environmental conditions (   ) (which can be 109 

further portioned as ambient 
14

NO3
-
 from the water column (Dw) and coupled nitrification-denitrification (Dn)) and 110 

amended denitrification rates          , calculated as the sum of denitrification rates of ambient NO3
-
 (   ) and 111 

denitrification stimulated by the added labeled 
15

NO3
-
 (   ), and hereafter will be referred to as the denitrification 112 

capacity.  Denitrification was explicitly calculated from the 
29

N2 and 
30

N2 fluxes calculated directly from dissolved 113 

29
N2:

28
N2 and 

30
N2:

28
N2 measured with a MIMS.  Sediment-water interface gas flux (μmol m

-2
 hr

-1
) greater than zero 114 

indicates a release from the sediments to the water column.  All rates and fluxes pertaining to N species are 115 

expressed on N atom basis.   116 
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After sample collection for denitrification, approximately 1 L of inflow reservoir water and outflow water 117 

from each core were collected for DNRA analysis.  Samples and standards for 
15

NH4
+
 were prepared according to 118 

Holmes et al. (1998) and as described in Bernard et al. (2015).  
15

N analysis was performed at Utah State 119 

University’s Stable Isotope Lab.  DNRA was determined from the production rate of 
15

NH4
+
 (p

15
NH4

+
) according to 120 

Christensen et. al (2000), assuming that (i) DNRA takes place in the same sediment layers as denitrification and (ii) 121 

that the 
15

NO3
-
 that was reduced to NH4

+
 is similar to that of the 

15
NO3

-
 that was reduced to N2 (Christensen et al., 122 

2000).   123 

Anammox from slurry assays 124 

Following intact sediment core collection, sediments (n=3) at each site were collected by hand with a 125 

sediment core (9.5 cm ID) and the top 5 cm were combined and homogenized.  At each sampling event, anammox 126 

rates were determined with 
15

N (99 atom %, 100 μmol NO3
-
 L

-1
) tracer slurry incubations at each station in triplicate 127 

according to Thamdrup and Dalsgaard (2002).  Anammox on average contributed to 2% of the overall N2 production
 128 

and is not discussed further. 129 

Oxygen and hydrogen sulfide sediment profiles 130 

We also collected duplicate sediment cores (17 cm x 9.5 cm ID) at each site to determine sediment O2 and 131 

hydrogen sulfide (measured as HS
-
) concentrations.  Concentrations just above the sediment-water interface and in 132 

the sediments to a depth of 1 cm at 1 mm intervals were determined with a microelectrode system (Unisense Ox-133 

500, H2S-50) with sensors calibrated as recommended by the manufacturer.  134 

Statistical Analysis 135 

To test the seasonal flux variability between sites in Weeks Bay, two-way ANOVAs with site and date as 136 

independent variables were performed.  If data could not be transformed to meet ANOVA assumptions, we carried 137 

out Wilcoxon/Kruskal-Wallis nonparametric tests with all parameters with site and date as independent factors.  138 

When differences were significant, Tukey HSD or Steel-Dwass post hoc tests were used to test for interactions.  A 139 

Principal component analysis (PCA) was conducted on all biogeochemical parameters to identify underlying 140 

multivariate components that may be influencing DNRA and denitrification.  Statistical significance was set at 141 

α=0.05 and error is reported as standard error.  We used SAS JMP 10 (SAS Institute Inc.) to carry out all statistical 142 

analysis.   143 

 144 
RESULTS 145 
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Site Characteristics 146 

Temperature exhibited significant seasonal variability (p=0.042) and a moderate 10 °C seasonal range (Fig. 147 

2a).  Salinity fluctuated substantially and was lowest in March 2013 (1.6) (Fig. 2a) coinciding with a spike in 148 

Magnolia River discharge (USGS daily discharge data not shown) even though it was only marginally correlated 149 

with seasons (p=0.0539).  Water column nutrient concentrations did not differ between site nor season (Fig. 2b).  150 

Water column NO3
-
 ranged from 0.6 ± 0.4 μM in June 2012 to 16.8 ± 3.1 μM in March 2013.  Water column NH4

+
 151 

ranged from 0.3 ± 0.3 μM in March 2012 to 3.4 ± 1.5 μM in June 2013.  Water column PO4
3-

 generally was less than 152 

0.2 μM throughout the study and resulted in elevated N:P ratios (average 118:1). 153 

The sediments at the Mouth consisted of 85% medium sand, 13% very fine sand and <1% silt and only 154 

differed marginally in composition from sediments at MidBay (76% medium sand, 15% very fine sand, and 4% silt).  155 

The sediment C:N averaged 15.0 ± 1.3 and ranged from 12.0 to 21.0 but did not differ between sites (p=0.753) or 156 

seasons (p=0.110).  Sediments in Weeks Bay were often anoxic by 3 mm in the winter and by 1 mm in the summer 157 

(Fig. 3 top panel).  The only months with oxygen present past 1mm were December 2011 and June 2013 at the 158 

Mouth and March 2012 and March and October 2013 at MidBay.  Hydrogen sulfide was nearly always present in 159 

the top 1 cm of the sediment at both sites and maximum values were found in March 2012 and ranged from 37.7 ± 160 

0.9 μM at MidBay to 57.2 ± 1.2 μM at the Mouth (Fig. 3 bottom panel).  A second event of high surficial HS
-
 161 

concentrations was observed at both locations in March 2013.  The only months without HS
-
 in the top 1 cm of 162 

sediment were June 2012 and October 2013 at the Mouth and June 2012, June and October 2013 at MidBay.   163 

Denitrification and DNRA 164 

In situ denitrification, D14, (Fig. 4a) was low and averaged 0.8 ± 0.5 μmol N m
-2

 hr
-1

 at the Mouth and 1.6 ± 165 

0.4 μmol N m
-2

 hr
-1

 at MidBay with an overall average of 0.9 ± 2.3 μmol N m
-2

 hr
-1

.  D14 denitrification partitioned 166 

into Dw and Dn averaged 0.4 ± 0.2 and 0.4 ± 0.3 μmol N m
-2

 hr
-1

 respectively, at the Mouth and 0.5 ± 0.2 and 1.1 ± 167 

0.3 μmol N m
-2

 hr
-1

 respectively, at MidBay.  Overall, Dn contributed 55% and 69% to D14 at the Mouth and Midbay 168 

stations, respectively.  The denitrification capacity averaged 22.9 ± 15.0 μmol N m
-2

 hr
-1

 and was similar (p=0.365) 169 

between MidBay (33.6 ± 10.8 μmol N m
-2

 hr
-1

) and the Mouth (21.6 ± 12.9 μmol N m
-2

 hr
-1

).  Only denitrification 170 

capacity in June 2012 was significantly higher than the rest of the study period.   171 

DNRA ranged from a low of 8.8 ± 3.1 at the Mouth to a high of 89.7 ± 18.4 μmol NH4
+
 m

-2
 hr

-1
 at MidBay 172 

(Fig. 4b) and the rates were significantly higher at MidBay than at the Mouth (p=0.001).  DNRA and water column 173 
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NO3
-
 concentrations were positively correlated (r

2
=0.41, p=0.025) over the study duration.  DNRA at MidBay 174 

(average 56.1 ± 7.7 μmol N m
-2

 hr
-1

) was also generally greater than denitrification capacity (average 33.6 ± 10.8 175 

μmol N m
-2

 hr
-1

) at this location, while at the Mouth (DNRA average 34.5 ± 7.0 μmol N m
-2

 hr
-1

), DNRA only 176 

exceeded denitrification capacity in March 2012 and October 2013.  DNRA in March 2013 was significantly lower 177 

than the rest of the study period.  Average DNRA for Weeks Bay (44.4 ± 5.5 μmol N m
-2

 hr
-1

) exceeded in situ 178 

denitrification by an order of magnitude and the average denitrification capacity twofold. 179 

Principal Component Analysis 180 

The PCA analysis resulted in a two-component model that explained a cumulative 58% of the total variance in the 181 

abiotic variables (Table 1).  Water column inorganic N and salinity were correlated with PC1 which explained 35% 182 

of the total variance and indicated higher water column nutrient availability during times of greater freshwater 183 

delivery.  Temperature and HS
-
 and DO were correlated with PC2 and explained 23% of the total variance and 184 

indicated higher HS
-
 concentrations during the lower DO and warmer months.  Denitrification capacity was 185 

negatively correlated with PC1 (rho=-0.577, p=0.019) driven by the water column inorganic N.  DNRA did not 186 

correlate with either PC1 or PC2 but in the presence of excess NO3
-
, DNRA accounted for 66% of the total NO3

-
 187 

reduction (Table 2). 188 

 189 

DISCUSSION 190 

DNRA exceeds denitrification in Weeks Bay 191 

DNRA, consistent with our hypothesis, by far exceeded in situ denitrification in Weeks Bay.  At the 192 

Mouth, denitrification capacity was slightly lower or comparable to DNRA rates and at MidBay denitrification was 193 

consistently lower than DNRA.  Denitrification capacity in Weeks Bay varied seasonally, a pattern that is similar to 194 

previously studies in other coastal ecosystems (Piehler and Smyth, 2011; Seitzinger, 1994).  In Weeks Bay, Dn is 195 

responsible for between 55 to 69% of in situ denitrification at the Mouth and MidBay respectfully, but the 196 

magnitude of these fluxes are low because of the presence of HS
-
 and suggest a minimal role for nitrification and 197 

coupled nitrification-denitrification in this system.  In Weeks Bay denitrification increased in the presence of higher 198 

NO3
-
 concentrations consistent with predictions from Seitzinger (1988); Seitzinger and Giblin (1996).  DNRA 199 

dominated in situ denitrification in these carbon rich (C:N =15:1) and sulfidogenic sediments (Caffrey et al., 2013) 200 

and it remained the dominant NO3
-
 reduction pathway despite increases in denitrification at elevated NO3

-
 201 
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concentrations.  In the presence of excess NO3
-
, DNRA accounted for 66% of the total NO3

-
 reduction, and remained 202 

a significant pathway for N reduction in this system, consistent with other studies that have found DNRA 203 

contribution to NO3
-
 reduction to range from <3% to >60-99% (Giblin et al., 2013).  The significant relationship 204 

between water column NO3
-
 concentrations and DNRA implies that allochthonous NO3

-
 inputs can potentially 205 

support DNRA and lead to retention of bioavailable N in the systems.  DNRA, by retaining N in the system, 206 

exacerbates eutrophication in estuaries and may have major implications for how coastal ecosystems respond to 207 

elevated N loading.  208 

While the prevalence of DNRA over denitrification has been observed in other estuaries (An and Gardner, 209 

2002; Gardner and McCarthy, 2009; Koop-Jakobsen and Giblin, 2010), in some systems, DNRA rates are lower 210 

than or comparable to denitrification rates (Lansdown et al., 2012; McCarthy et al., 2007; Tobias et al., 2001).  The 211 

average DNRA rate in Weeks Bay was on the lower range of reported rates for Gulf of Mexico estuaries (1 to 241 212 

μmol N m
-2

 hr
-1

) (An and Gardner, 2002; Gardner and McCarthy, 2009) and other sub-tropical estuaries (up to 1137 213 

μmol N m
-2

 hr
-1

) (Dong et al., 2011; Dunn et al., 2013; Dunn et al., 2012; Porubsky et al., 2009).  DNRA is 214 

energetically favored over denitrification (597 versus 559 kJ mol
-1

 NO3
-
 at 30 °C) under NO3

-
 limiting conditions 215 

(Algar and Vallino, 2014; Dong et al., 2011), and low NO3
-
 availability has been regarded as a mechanism favoring 216 

DNRA over denitrification.  But other factors such as temperature, salinity, the presence of porewater sulfides 217 

(Burgin and Hamilton, 2007; Howarth et al., 2011; Yoon et al., 2015), the abundance of labile organic carbon 218 

relative to NO3
-
 (Algar and Vallino, 2014; Babbin and Ward, 2013; Burgin and Hamilton, 2007; Hardison et al., 219 

2015; Tiedje, 1988), and the overall rates of benthic metabolism (Burgin and Hamilton, 2007; Dong et al., 2011; 220 

Giblin et al., 2010; Nizzoli et al., 2006) can work independently or in concert to determine if NO3
-
 is used by DNRA 221 

or denitrification.  Many of these factors often covary and it is difficult to attribute the influence of a single factor as 222 

a driver on these two processes.  Multiple influential factors may be at work in Weeks Bay, given the lack of a 223 

relationship between the DNRA flux and either of the PCA principal components, as well as a lack of a strong 224 

individual influence from abiotic variables, save water column NO3
-
.   225 

Mesocosm and modeling studies found anammox to dominate in C limited systems, while heterotrophic 226 

denitrification and DNRA dominate in N limited environments as the C:N input increases (Algar and Vallino, 2014) 227 

and at higher ratios of C:N input, there is a switch to denitrification and finally DNRA as the environment switches 228 

from being C limited to N limited (Hardison et al., 2015).  Porubsky et al. (2009) found C:N ratios of 50-200 229 
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favored DNRA over denitrification, while Algar and Vallino (2014) found DNRA to exceed denitrification at CH20: 230 

NO3
-
 ratios around 3.  In Weeks Bay, the C:N ratio ranges from 12 to 21 (average 15), lending support that the 231 

system favors DNRA before we simulated estuarine N loading.  Moreover, the presence of sulfides in Weeks Bay 232 

sediments most probably limits nitrification (Joye and Hollibaugh, 1995), the supply of nitrate to the denitrifiers 233 

(Brunet and Garcia-Gil, 1996), and can be used chemolithoautotrophically to support DNRA.  Though DNRA and 234 

denitrification can coexist in environments with high C:N ratios (van den Berg et al., 2016), our data is consistent 235 

with the interpretation that HS
-
 appears to be a contributing driver for the dominance of DNRA over denitrification.  236 

These findings mirror those found for Little Lagoon, a nearby anthropogenically impacted coastal lagoon (Bernard 237 

et al., 2015).  In Little Lagoon, DNRA averaged 52.1 μmol N m
-2

 hr
-1

 and exceeded denitrification capacity by an 238 

order of magnitude (Bernard et al., 2015).  Sediments in Little Lagoon were also sulfidic, with concentrations that at 239 

times exceeded 4 mM and Bernard et al. (2015) attributed the high DNRA and low denitrification rates to high 240 

porewater sulfide concentrations.   241 

Ecosystem Implications 242 

The primary management goals for many nearshore marine ecosystems focuses on restoring the hydrology, 243 

establishing the natural shorelines and marshes, as well as reducing delivery of nutrients (Pinckney et al., 2001).  244 

The increased urban and agricultural developments in the Weeks Bay watershed have lead to higher inputs of N 245 

resulting in high chlorophyll, blooms of harmful algae, and fish kills.  This study empirically confirms that DNRA 246 

as opposed to denitrification is the dominant NO3
-
 reduction pathway in Weeks Bay and the dominance of DNRA 247 

over denitrification has important ecosystem implications.  248 

Caffrey et al. (2013) reported total N input to Weeks Bay of 10 mol N m
-2

 yr
-1

, which is one of the highest 249 

rates of N loading to an estuary in the northern Gulf of Mexico estuaries.  However, because the residence time of 250 

the estuary is short (mean 13 days, Schreiber and Pennock, 1995) using Nixon et al. (1996) relation between N 251 

retention and residence time, we estimate that 75% of the N input is exported from the estuary.  The flux of 252 

bioavailable N to the water column through DNRA is equivalent to 15% of the TN input retained in the estuary, and 253 

therefore, is a significant component of the N budget.  Caffrey et al. (2013) also determined primary production in 254 

Weeks Bay to be 599 g C m
-2

 yr
-1

, which after applying the Redfield ratio (Redfield, 1958) amounts to a 255 

phytoplankton N demand of 7.5 moles N m
-2

 yr
-1

.  We estimate that DNRA provides 5% of the N demand by 256 

primary producers.   257 
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Inputs of nutrients to the estuary stimulate phytoplankton growth leading to bloom events that will result in 258 

the delivery (deposition) of phytoplankton C to the benthos that once mineralized leads to further nutrient release to 259 

the water column promoting water column primary production.  The balance between N and P supply to the water 260 

column is a dominant factor shaping the phytoplankton community and has been implicated in blooms of harmful 261 

algae (Glibert et al., 2005).  The role of DNRA in supplying bioavailable N to the water column and as a factor 262 

shaping the phytoplankton community composition remains to be determined.  Because DNRA remains a significant 263 

process even in the presence of elevated NO3
-
 concentrations in these sulfidogenic sediments, if management 264 

decisions do not lead to a reduction of nutrient inputs to this estuary, it is conceivable that higher inputs of nutrients 265 

to Weeks Bay will contribute to the initiation and retention of algal blooms (An and Gardner, 2002) and subsequent 266 

deposition of organic matter to the sediments, degradation of which will lead to more hypoxic events (Pinckney et 267 

al., 2001) and fish kills in this and similarly impacted ecosystems.  268 
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Fig.1 

Map of study area at Weeks Bay, AL showing study sites (Mouth and MidBay)  



 
Fig.2 (A) Average values of the two sites for water temperature and salinity from the sites in Weeks Bay.  

Letters indicate significant seasonal differences for temperature; salinity was not statistically seasonally 

different.  (B) Average values of the two sites for water column inorganic nutrients (n=3 each site).  Water 

column nutrient concentrations did not differ between site nor season during the study.  (C) Average values 

of sediment chlorophyll-a (mg m
-2

) and water column chlorophyll-a (ug L
-1

) and sediment C:N ratio.  

Letters indicate significant seasonal differences for sediment chlorophyll-a, while water column 

chlorophyll-a and sediment C:N were not statistically seasonally different.  Error is reported as ± 1 SE 



 

 

 

 
Fig.3 Oxygen (top panel) and hydrogen sulfide (bottom panel) concentrations (µM) in the top 1 cm of 

sediment at Mouth and MidBay.  Note the differences in scale 

 

 

 

 

 



 
Fig.4 (A) The system capacity for denitrification at the Mouth (white bar) and MidBay (gray bar) with D14, 

in situ denitrification (dotted bars), (n=5).  (B) DNRA at the Mouth (white bar) and MidBay (gray bar).  

DNRA rates were significantly higher at MidBay than at the Mouth.  Error bars are ± 1 SE 



Table 1 Eigenvector values from the principal components analysis.  Bolded values had strongest 

relationships.  

 

Eigenvector Principal 1 (35.4%) Principal 2 (22.9%) 

Temperature (°C) -0.1993 0.4344 

Salinity -0.3524 -0.2192 

DO (mg L
-1

) 0.2262 -0.5064 

pH -0.3424 0.1394 

Water column NO2
-
 (µM) 0.4494 0.0902 

Water column NO3
-
 (µM) 0.4372 0.1758 

Water column NH4
+
 (µM) 0.3728 0.2653 

Water column PO4
3-

 (µM) -0.0902 0.2752 

Water column chl-a (mg m
-2

) 0.3461 -0.1879 

Highest sediment HS
-
 (µM) 0.0875 0.5167 

 

 

Table 2.  Average site % DNRA contribution to N reduction with ± 1 SE in parentheses.   

 

Date Average % DNRA 

to N reduction 

Dec. 2011 N/A 

March 2012 77% (0.1) 

June 2012 56% (0.2) 

Sept. 2012 48% (0.2) 

Dec. 2012 70% (0.3) 

March 2013 62% (0.2) 

June 2013 69% (0.3) 

Oct. 2013 82% (0.1) 

Study Average 66% 

 

 



 




